Filtering and Model Reduction of PDAEs with Stochastic Boundary Data
نویسندگان
چکیده
منابع مشابه
Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation
The problem of constructing data-based, predictive, reduced models for the KuramotoSivashinsky equation is considered, under circumstances where one has observation data only for a small subset of the dynamical variables. Accurate prediction is achieved by developing a discrete-time stochastic reduced system, based on a NARMAX (Nonlinear Autoregressive Moving Average with eXogenous input) repre...
متن کاملCircular Mean Filtering For Textures Noise Reduction
In this paper, a special preprocessing operations (filter) is proposed to decrease the effects of noise of textures. This filter using average of circular neighbor points (Cmean) to reduce noise effect. Comparing this filter with other average filters such as square mean filter and square median filter indicates that it provides more noise reduction and increases the classification accuracy...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولa study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
Filtering Nonlinear Spatio-Temporal Chaos with Autoregressive Linear Stochastic Model
Fundamental barriers in practical filtering of nonlinear spatio-temporal chaotic systems are model errors attributed to the stiffness in resolving multiscale features. Recently, reduced stochastic filters based on linear stochastic models have been introduced to overcome such stiffness; one of them is the Mean Stochastic Model (MSM) based on a diagonal Ornstein-Uhlenbeck process in Fourier spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2019
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.201900130